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Abstract
The q-Gaussian distributions introduced by Tsallis are discussed from the
point of view of variance mixtures of normals and exchangeability. For each
−∞ < q < 3, there is a q-Gaussian distribution that maximizes the Tsallis
entropy under suitable constraints. This paper shows that q-Gaussian random
variables can be represented as variance mixtures of normals when q > 1.
These variance mixtures of normals are the attractors in central limit theorems
for sequences of exchangeable random variables, thereby providing a possible
model that has been extensively studied in probability theory. The formulation
provided has the additional advantage of yielding, for each q, a process which
is naturally the q-analog of the Brownian motion. Explicit mixing distributions
for q-Gaussians should facilitate applications to areas such as option pricing.
The model might provide insight into the study of superstatistics.

PACS numbers: 02.50.Cw, 02.50.Ey, 02.50.Gg
Mathematics Subject Classification: 60F05, 60F09, 82C31

1. Introduction

Developments in nonextensive statistical mechanics based on an entropy proposed by
Constantino Tsallis (1988) gave rise to q-Gaussian distributions which are being applied
in numerous research areas, see Gell-Mann and Tsallis (2004), Boon and Tsallis (2005)
and Tsallis (2009). Applications are based on experimental, computational and analytical
results. By definition, for −∞ < q < 3, the q-Gaussian density has the form gq(x) =
Cq[1 − (1 − q)x2]1/(1−q) where Cq is specified in section 2. The q-Gaussian distributions
discussed in this paper are those introduced in nonextensive statistical mechanics by Tsallis
(1988), written in the above form first by Alemany and Zanette (1994). They are distinct
from those introduced in non-commutative probability by Bożejko et al (1997). Theoretical
under-pinnings of the q-Gaussians are founded on a novel q-algebra (Borges 2004). The
purpose of this paper is to propose a stochastic model within the framework of usual algebra
that is consistent with many of the phenomena researchers are attempting to model by the
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q-Gaussian distributions with tails that decay as a power of x (those with 1 < q < 3) as well
as the Gaussian distribution (q = 1). The model not only facilitates theoretical investigations,
but helps to clarify why q-Gaussian distributions arise in certain physical applications.

For each −∞ < q < 3, Tsallis (1988) defines a q-Gaussian distribution to be the
distribution which, under certain conditions, maximizes the Tsallis q-entropy:

Sq = k
1 − ∑W

i=1 p
q

i

q − 1
,

where W ∈ N is the total number of possible microscopic configurations, {pi} are the
associated configuration probabilities with

∑W
i=1 pi = 1 and k is a conventional positive

constant. When q = 1, the definition is understood via the limit, in which case the 1-
entropy recovers the Boltzmann–Gibbs entropy. The 1-Gaussian is simply the usual Gaussian
distribution. The q-Gaussian distributions have tails that decay at infinity as |x|−2/(q−1) when
1 < q < 3 and have bounded support when q < 1.

To a large extent, prevalence of the Gaussian distributions in theory and applications
stems from their roles as attractors, e.g. via the classical central limit theorem for sequences
of independent, identically distributed random variables with finite second moments. The
dependence structure that should lead to q-Gaussian limits has remained elusive. The phrase
‘globally correlated’ is often attached to phenomena in statistical mechanics to which Tsallis
entropy is applied.

There have been efforts to understand nonextensivity and the role of q-Gaussians from a
probability point of view. For example, Umarov et al (2008) prove q-central limit theorems
using q-algebra and a notion of q-independence. Since the system developed is surprisingly
neat mathematically, it is interesting to understand in the sense of usual probability the intuitive
meanings of q-algebra operations and q-independence. Using usual algebra and usual notions
of dependence, our paper establishes that q-Gaussians, with 1 � q < 3, have a role as natural
attractors since they are a subset of the possible limits in a general central limit theorem for
dependent random variables. This provides an explanation for the wide occurrence of at least
the q-Gaussians with 1 � q < 3.

Our initial investigations were stimulated by the common features of two specific
mathematical models for which it is possible to analytically verify whether or not their
weak limits are q-Gaussians. Vignat and Plastino (2007) suggest a model which combines
randomness in the normalizer with each i.i.d. random variable, and shows that the weak limit
is q-Gaussian. Their model can be viewed differently, namely as a special case of a sequence
of exchangeable random variables (remark 3.5). Marsh et al (2006) provides practical models
by applying Leibnitz triangles, in which the triangular arrays of random variables are row-
wise exchangeable; however, weak limits are not q-Gaussian (Hilhorst and Schehr 2007).
Both examples are discussed further in section 2 since they motivated our consideration of
exchangeability as a possible probability model that might be connected to some applications
being considered using Tsallis nonextensivity theory.

From a different but related direction, this paper is also stimulated by a possible connection
between the proposed model and superstatistics. Beck and Cohen (2003) introduce the concept
of superstatistics for generalized Boltzman factors derived from systems that evolve in complex
environments. The expression for a superstatistic can be interpreted as a variance mixture of
normals (VMON) (or scale mixture of normals) after standardization. Moreover, in a specific
case, the superstatistic reduces to the Tsallis statistic (Beck 2001). VMONs are the attractors in
a central limit theorem for exchangeable sequences, see Jiang and Hahn (2003). Furthermore,
the reason behind studying superstatistics, such as a non-homogeneous background where a
mechanical system expands, strongly suggests exchangeability in modeling the underlying
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system. De Finetti’s theorem (Chow and Teicher 1978) characterizes an infinite sequence of
exchangeable random variables as a mixture of i.i.d. sequences, i.e. an infinite exchangeable
sequence is conditionally an i.i.d. sequence. Thus, if a mechanical system evolves in a complex,
non-homogeneous background with the usual central limit theorem (for i.i.d. sequences)
holding in each homogeneous part of the background, then the limiting process has marginals
which are mixtures of normals. Further discussion of superstatistics appears at the end of
section 2.

Similar arguments can be made in finance. Viewing market movements as responses
to different specific information (interest rate, macro financial data, earnings, etc), then
conditioning on each specific type of information, yields a market which follows a random
walk. Consequently, distributions that can model asset returns could naturally be mixtures
of normals. Empirical evidence (Hall et al 1989, Gribbin et al 1992, Kon 1984) has
shown that discrete VMONs fit asset returns data better than stable distributions or than
the Student model. Stables have been studied more extensively than discrete VMONs.
Moreover, the research literature on applications of continuous VMONs seems to be quite
limited.

A drawback to the applications of VMONs has always been that the mixing distributions
are not generally easy to obtain from data. Expectation maximizing (EM) algorithms are
usually employed. However, when the number of Gaussians in the mixture is large, or in many
cases infinite, computations become very complicated. This paper shows that q-Gaussians
are VMONs when 1 � q < 3 (and not when q < 1). Furthermore, the mixing distributions
are calculated explicitly, thereby facilitating application of these models. For example, the
option price obtained from a VMON is the mixture of the option prices when the variance
is fixed. Therefore, if one believes that q-Gaussians are good models for financial returns,
then their option prices can be calculated simply by mixing the prices obtained from the
classical Black–Scholes model with the known mixing distributions. Furthermore, studying
mixing distributions might provide insight into the ‘background’. For instance, a belief that
information drives stock prices suggests viewing the mixing distributions as models for the
impact of information.

The examples discussed above are each special cases of the model proposed in this
paper. Our model of q-Gaussian distributions based on exchangeability, which is restricted
to 1 � q < 3, is specified using usual algebra, rather than q-algebra, and has the following
features:

(1) specification of q-Gaussian random variables as specific variance mixtures of normals;
(2) associated central limit theorems for dependent exchangeable random variables with the

q-Gaussians as natural attractors;
(3) associated stochastic processes which in a natural sense are the q-analogs of Brownian

motions.

Within this model, as the latter two features indicate, the notion of ‘global correlation’
is specified as exchangeability. From this point onwards we consider the appearance of
q-Gaussians only as variance mixture of normals under the exchangeability concept, not
discussing their appearance from other concepts. Therefore, our q-analog of the Brownian
motion will be called a q-VM Brownian motion, where the VM designates variance mixture.

1.1. Organization of the paper

Section 2 makes the connection between q-Gaussians and variance mixtures of normals as well
as obtaining a complete specification of the mixing distributions, which facilitates applications.
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Superstatistics are discussed as an example. Section 3 provides a detailed mathematical
description of exchangeability and establishes central limit theorems for exchangeable
sequences and row-wise exchangeable triangular arrays. The examples motivating our
consideration of exchangeability are discussed further in this section. Our concept of the
q-analog of the Brownian motion is introduced in section 4 followed by some comparisons
with a stochastic process in Borland (1998) that has q-Gaussian marginal distributions.
Section 5 is the conclusion.

1.2. Conventions

Throughout the paper, Z will be used specifically for a standard normal random variable
that is independent of any other random variables. →L, →P , →a.s. stand respectively for
convergence in distribution, in probability and almost surely. It is worth re-emphasizing that
all further discussion relies on usual algebra rather than q-algebra.

2. q-Gaussians and variance mixtures of normals

The q-Gaussian distributions form a one-parameter family of distributions for −∞ < q < 3
with densities specified by gq(x) = Cq[1 − (1 − q)x2]1/(1−q), where the normalizing constant
Cq is given by

C−1
q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2√
1 − q

∫ π/2

0
(cos t)

3−q

1−q dt =
2
√

π�
(

1
1−q

)
(3 − q)

√
1 − q�

( 3−q

2(1−q)

) , −∞ < q < 1,

√
π, q = 1,

2√
q − 1

∫ ∞

0
(1 + y2)

−1
q−1 dy =

√
π�

( 3−q

2(q−1)

)
√

q − 1�
(

1
q−1

) , 1 < q < 3.

When q = 1, the expression for gq is understood by taking limits and yields the standard
normal density function. The support of the q-Gaussian is (−∞,∞) if 1 � q < 3 and the
compact set

[− 1√
1−q

, 1√
1−q

]
, if −∞ < q < 1.

A variance or (scale) mixture of normal distributions (VMON) by definition has a
characteristic function of the form φ(t) = ∫ ∞

0 exp(−t2u/2) dH(u), with H a distribution
function on [0,∞), called the mixing distribution. The corresponding density is

f (x) =
∫ ∞

0
(2πu)−1/2 exp(−x2/(2u)) dH(u).

Each VMON has a representation of the form V Z where V > 0 a.s., and V is independent of
Z. The VMONs include many commonly used distributions such as the symmetric stable
distributions, the Cauchy, Laplace, double exponential, logistic, hyperbolic and Student
distributions and their mixtures, plus many others (Keilson and Steutel 1974, Gneiting 1997).

The connection between the q-Gaussians and the VMON can be made by applying the
theory of completely monotone functions. A function h is completely monotone on (0,∞) if
and only if (−1)nh(n)(x) � 0 for x > 0, and n = 0, 1, 2, . . ..

Andrews and Mallows (1974) shows that a symmetric density function fX(x) is a variance
mixture of normals if and only if fX(

√
x) is completely monotone. It is easy to show that

gq(
√

x) is completely monotone for q > 1 and not completely monotone for q < 1, which
leads to the following statement.
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Theorem 2.1. q-Gaussians are variance mixtures of normals when 1 < q < 3 and not
mixtures of normals when q < 1.

Since not every VMON is a q-Gaussian, it remains to identify the mixing distributions
that yield the q-Gaussians for 1 < q < 3. In Beck (2001) the q-Gaussians are identified as 1

a
Z

where a2 has a χ2 distribution with q derived from the degrees of freedom. Below we provide
a direct proof using the Laplace transform technique when the inverse Laplace transform of
the density is known. It illustrates a method applicable to identification of unknown mixing
measures from other variance mixtures of normals as well.

Theorem 2.2. The q-Gaussian density for 1 < q < 3 can be expressed as the following
variance mixture of normal densities:

gq(x) ≡ fV ·Z,q =
∫ ∞

0

1√
2πv

exp

(−x2

2v2

)
fV (v) dv

where the mixing measure

dH(v) = fV (v) dv = CV,q exp

(
− 1

2(q − 1)v2

)
v

− 2
q−1 dv,

with C−1
V,q = �

( 3−q

2(q−1)

) · 1
2 · [2(q − 1)]

3−q

2(q−1) .

Proof. Let L denote the Laplace transform. Since L(exp(−bt) · tα) = �(α+1)

(ξ+b)α+1 for α > −1,

the choice of α = 1
q−1 − 1 = 2−q

q−1 , b = 1
q−1 yields

L

(
exp

(
− t

q − 1

)
· t

2−q

q−1

)
=

�
(

1
q−1

)
(
ξ + 1

q−1

) 1
q−1

=
�

(
1

q−1

)
(q − 1)

1
q−1

[1 + (q − 1)ξ ]
1

q−1

.

Equivalently,

C ′
q[1 − (1 − q)x2]1/(1−q) =

∫ ∞

0
exp(−x2t) dH(t),

where dH(t) = exp
(− t

q−1

) · t
2−q

q−1 dt and C ′
q = �

(
1

q−1

)
(q − 1)

1
1−q . Routine calculations

verify the claim where the following substitutions are used: v2 → v in the second equality,
1/v → u in the third equality and

(
1
2

(
x2 + 1

q−1

)
u → v

)
in the fourth equality:∫ ∞

0

1√
2πv

exp

(−x2

2v2

)
fV (v) dv

= CV,q

∫ ∞

0

1√
2πv

exp

(−x2

2v2

)
exp

(
− 1

2(q − 1)v2

)
v

− 2
q−1 dv

= 1

2
√

2π
CV,q

∫ ∞

0
exp

(
−1

2

(
x2 +

1

q − 1

)
· 1

v

) (
1

v

) q

q−1

dv

= 1

2
√

2π
CV,q

∫ ∞

0
exp

(
−1

2

(
x2 +

1

q − 1

)
u

)
u

1
q−1 −1 du

= 1

2
√

2π
CV,q

∫ ∞

0
exp(−v) · v

1
q−1 −1 ·

(
1

2

(
x2 +

1

q − 1

)) −1
q−1

dv

= 1

2
√

2π
CV,q�

(
1

q − 1

) (
1

2

(
x2 +

1

q − 1

)) −1
q−1

= 1√
2π

CV,q2
2−q

q−1 �

(
1

q − 1

)
(q − 1)

1
q−1 (1 + (q − 1)x2)

−1
q−1 .
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It is not hard to verify that

1√
2π

CV,q2
2−q

q−1 �

(
1

q − 1

)
(q − 1)

1
q−1 = Cq,

which completes the proof. �

In theorem 2.2, V is 1 over the square root of a χ2 distribution with the number of degrees
of freedom being 2

q−1 − 1. Also note that when q = 2, the q-Gaussian is Cauchy and

fV (v) =
√

2

π

1

v2
exp

( −1

2v2

)
.

When q < 4/3, EX2 < ∞. This situation is important in finance or risk management
where the variance is often used to quantify the risk. In that situation, the q-Gaussians are
superior to non-Gaussian stable distributions which fail to have finite second moments. When
q < 3/2, EX < ∞. This situation is important in finance or insurance when measuring mean
returns or mean expenses.

The mixing distributions are a type of generalized inverse Gaussian distribution, and the
q-Gaussians are a type of generalized hyperbolic distribution. It is worth noting that both
generalized inverse Gaussian and generalized hyperbolic distributions are infinitely divisible.
Since infinitely divisible laws are the only attractors for triangular arrays of independent
random variables, this fact might help to explain why q-Gaussians should be often observed.

2.1. Example: superstatistics

As a test particle moves from cell to cell, its velocity v satisfies a Langevin equation

v̇ = −γ v + σḂt , (1)

where Bt is a standard Brownian motion. Instead of γ and σ being deterministic, as in classical
statistical physics, Beck and Cohen (2003) let β = γ /σ 2 be a random variable with density
f (β). In this setting, the widely used classical Boltzman factor e−βE takes a generalized form
called a superstatistic:

B(E) =
∫ ∞

0
k(β) e−βE dβ, (2)

where E represents the energy of a microstate associated with each cell. Note that the
superstatistic in (2) is exactly a variance mixture of normals after standardization. The special
case where k(β) (the density of 1/V 2 in our theorem 2.2) is the density of a χ2 random
variable yields the Tsallis statistic (Beck 2001).

3. Central limit theorems for exchangeable random variables

A brief introduction to exchangeability is required (for details, see Chow and Teicher 1978).
A sequence of random variables {Xn, n � 1} defined on some probability space is said to

be exchangeable if for each n,

P(X1 � x1, . . . , Xn � xn) = P(Xπ(1) � x1, . . . , Xπ(n) � xn)

for any permutation π of {1, 2, . . . , n} and any xi ∈ R, i = 1, . . . , n.
By de Finetti’s theorem, an infinite sequence of exchangeable random variables in some

appropriate space is conditionally i.i.d.,given the σ -field G of permutable events. Furthermore,
there exists a regular conditional distribution P ω for Xi, given G such that for each ω ∈ �

6
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the coordinate random variables {ξn ≡ ξω
n , n � 1}, called mixands, are i.i.d. Hence, for each

natural number n, any Borel function f : Rn → R, and any Borel subset B of R,

P(f (X1, . . . , Xn) ∈ B) =
∫

�

P (f (X1, . . . , Xn) ∈ B|G) dP

=
∫

�

P ω(f (ξ1, . . . , ξn) ∈ B) dP.

The mixands are allowed to be on a different probability space than the Xi’s.
For exchangeable sequences, the dependence never dies in contrast to weakly dependent

sequences. Hence if the covariance exists, it does not change along the sequence. Moreover,
for an infinite exchangeable sequence the covariance is always non-negative.

3.1. Example

The model proposed in Marsh et al (2006) considers N identical and distinguishable, but
not necessarily independent binary subsystems. Let rN,n be the probability that there are n
subsystems in state 1, which is given by the Leibnitz rule:

rN,n + rN,n+1 = rN−1,n.

Since construction of the model only considers the number of subsystems in state 1, the order
of 1’s and 0’s does not matter, a typical property of exchangeable sequences. Hilhorst and
Schehr (2007) showed that the weak limit is not a q-Gaussian. However, using the same
Leibnitz rule, Rodriguez et al (2008) and Hanel et al (2009) constructed exchangeable models
that do have a q-Gaussian limit.

Turning to central limit theorems, the following simplified and adapted version of
theorem 2.1 in Jiang and Hahn (2003) suffices for the needs of this paper. The proof is
provided for completeness.

Theorem 3.1. Let {Xn, n � 1} be an infinite sequence of exchangeable random variables
where X1 has mean 0 if the mean exists or is symmetric otherwise. Assume that 0 < E ξ 2

1 < ∞
a.s. Then either

(i)

∑n
i=1 Xi√

n
→L V1 · Z

or

(ii)

∑n
i=1 Xi

n
→a.s. V2,

where V1 = √
Var(ξ1) = √

Var(X1|G) and V2 = E ξ1 = E(X1|G).

Proof. By de Finetti’s theorem, for any real x,

P

(∑n
i=1 Xi√

n
� x

)
=

∫
�

P ω

(∑n
i=1 ξi − nEξ1√

n · σ(ξ1)
σ (ξ1) +

√
nEξ1 � x

)
dP,

where σ(ξ1) denotes the standard deviation of ξ1. If Eξ1 = 0 a.s., then the classical central
limit theorem holds for the mixands and case (i) of the theorem holds. If Eξ1 is not almost
surely 0, replace the

√
n in the previous equation by n. Then the first summand inside the

regular conditional probability on the right side integral converges to zero almost surely and
case (ii) of the theorem holds. �

Remark 3.2. The condition put on the mixands, 0 < Eξ 2
1 < ∞ a.s., is generally weaker

than assuming that Xi’s have finite second moments.
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Remark 3.3. Case (i) of theorem 3.1 shows that q-Gaussians when 1 < q < 3 are among
the possible limits in a central limit theorem for exchangeable sequences. However, they
are not the only ones. It seems more natural to consider q-Gaussians as limit distributions
in case (i) since theoretically the range of distributions in case (ii) is vast. For example, let
εi’s be i.i.d. with mean 0 and standard deviation 1, and Y be any random variable that is
independent of all εi’s. Then {Y + εi, i � 1} is a sequence of exchangeable random variables
and

∑
(Y + εi)/n →a.s. Y .

Remark 3.4. In case (i), EX1X2 = 0 if it exists, which means that q-Gaussians can be
attractors of uncorrelated, but not necessarily independent, exchangeable sequences of random
variables. In the second case, EX1X2 �= 0 if it exists and in this case the central limit theorem
is really the strong law of large numbers for exchangeable random variables. This case explains
why the examples in Rodriguez et al (2008) and Hanel et al (2009) achieve q-Gaussian limits
with normalizers at the rate of n.

Remark 3.5. Theorem 4.1 of Vignat and Plastino (2007) says that if Yi are i.i.d. in the domain
of normal attraction of Z and a2 has a χ2-distribution (correcting a typo), then 1

a
√

n

∑n
1 Yi

converges in distribution to a q-Gaussian distribution. Their theorem in one dimension is a
special case of theorem 3.1 in this paper with Xi = V1 ·Yi where V1 = 1

a
. However, in general,

a sequence of exchangeable random variables does not necessarily have the form V · Yi .

The next theorem is a triangular array version of theorem 3.1, which seems to be new.

Theorem 3.6. Let {Xn,i, 1 � i � n, n = 1, 2, . . .} be a triangular array of row-wise
exchangeable random variables that can be embedded into infinite exchangeable sequences.
Assume that Xn,i’s are centered or symmetric with 0 < E ξ 2

n,1 < ∞ in probability for each n,
and V ar(ξn,1) → V 2

1 in probability when n → ∞, with V1 > 0 a.s. Then∑n
i=1 Xn,i√

n
→L V1 · Z + V2

when
√

nEξn,1 → V2, and∑n
i=1 Xn,i

nα
→P V3

with α > 1/2, when n1−αEξn,i →P V3 as n → ∞.

Proof. By de Finetti’s theorem, for any real x,

P

(∑n
i=1 Xn,i√

n
� x

)
=

∫
�

P ω

(∑n
i=1 ξn,i − nEξn,1√

n · σ(ξn,1)
σ (ξn,1) +

√
nEξn,1 � x

)
dP.

Using the definition of weak convergence in probability (Hahn and Zhang 1998), and the
conditions that

√
nEξn,1 →P V2, σ(ξn,1) →P V1 with V1 > 0 a.s. and that the mixands have

finite second moments almost surely, yields, when n → ∞,

P

(∑n
i=1 Xn,i√

n
� x

)
→

∫
�

P ω(V1Z + V2 � x) dP = P(V1Z + V2 � x).

When n1−αEξn,1 →P V3 with α > 1/2 and V2 �= 0 a.s., again, by de Finetti’s theorem,

P

(∑
Xn,i

nα
� x

)
=

∫
�

P ω

(∑n
i=1 ξn,i − nEξn,1

nα · σ(ξn,1)
σ (ξn,1) + n1−αEξn,1 � x

)
dP.
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Since ∑n
i=1 ξn,i − nEξn,1

nασ(ξn,1)
→P 0

when α > 1/2 and σ(ξn,1) →P V2,∑n
i=1 ξn,i − nEξn,1

nα · σ(ξn,1)
σ (ξn,1) →P 0,

and the second part of the theorem is proved. �

Remark 3.7. When Xn,i’s are identically distributed, then V2 = 0 and α = 1, which is
consistent with theorem 3.1.

4. q-analog of the Brownian motion

The literature on q-Gaussians thus far has failed to provide the construction of a clear q-analog
of the Brownian motion. Our representation of q-Gaussians for q > 1 in terms of variance
mixtures of normals, using usual probabilistic and algebraic notions, leads to the definition of
a process that might naturally be called a q-Brownian motion. However, that name is already
in use in other areas. Thus, the process to be constructed will be called a q-VM Brownian
motion, where V M reflects the fact that it is a variance mixture of Brownian motions.

We first require some definitions.

Definition 4.1. A stochastic process is called exchangeable if it is continuous in probability
with X0 = 0 and such that the increments over disjoint intervals of equal length form an
exchangeable sequence.

Definition 4.2. X has conditionally independent, stationary increments, given some σ -field,
if both properties of the increments are conditionally valid for any finite collection of disjoint
intervals of the same length.

These two definitions are connected by the following theorem of Bühlmann which
characterizes exchangeable processes on R+ (see e.g. theorem 9.21 of Kallenberg (2002)).

Theorem 4.3 (Bühlmann). Let the process (Xt )t�0 be Rd-valued and continuous in probability
with X0 = 0. Then X is exchangeable if and only if it has conditionally independent, stationary
increments given some σ -field.

We can now define our q-VM Brownian motion.

Definition 4.4. A q-VM Brownian motion, Bq
t , with 1 � q < 3 is a stochastic process having

the following properties:

(1) conditionally independent, stationary increments;
(2) all increments are q-Gaussian;
(3) a.s. continuous sample paths.

Theorem 4.5 (Existence). For each 1 � q < 3, a q-VM Brownian motion exists.

Proof. Let Bt be a standard Brownian motion. When q = 1, B1
t = Bt is a process satisfying

all three conditions with the conditional σ -field being the trivial σ -field. For 1 < q < 3, let
Vq be a random variable with the density fq given in theorem 2.2. Then B

q
t = Vq · Bt has

conditionally stationary and independent increments given the value of Vq. All increments are
q-Gaussian. Furthermore, a variance mixture of processes with a.s. continuous sample paths
has a.s. continuous sample paths. �

9



J. Phys. A: Math. Theor. 43 (2010) 165208 M G Hahn et al

4.1. Example: comparison with the Borland process

Borland (1998) provides another process with q-Gaussian marginals. Let Yt be the log returns
of stock prices that follow the stochastic differential equation dYt = μdt + σd�t , where �t

evolves according to d�t = P(�t)
(1−q)/2 dBt . The evolution of the probability distribution P

of Yt is nonlinear according to the nonlinear Fokker–Planck equation (μ = 0, σ = 1)

∂

∂t
P (x, t |y) = 1

2

∂2

∂x2
[P 2−q(x, t |y)].

Solutions for P(x, t |y) are given by q-Gaussians for each fixed t, as established in Borland
(1998) or using the q-Fourier transform as in Umarov and Queiros (2009).

Our q-VM Brownian motion has conditionally, stationary and independent increments,
each of which is q-Gaussian. This is expressed by the fact that its transition density is expressed
in the form

P(t, x|y) =
∫ ∞

0
p(t, x|y, v)fV (v) dv,

where p(t, x|y, v) for each fixed v satisfies the linear Fokker–Planck equation

d

dt
p(t, x|y, v) = 1

2
v2 ∂2p(t, x|y, v)

∂x2
,

and the occurrence of the transition probability for a particular v is weighted according to the
density fV (v) specified in section 2.

The Borland process clearly differs from our q-VM Brownian motion. Even though the
Borland process has stationary increments (Umarov and Queiros 2009), its increments are not
conditionally independent. It does have continuous paths and q-Gaussian marginals.

5. Conclusion

This paper provides a probabilistic model for q-Gaussian distributions with 1 � q < 3
based on exchangeability as one of the possible notions of ‘global correlation’. The model
is consistent with many of the phenomena for which q-Gaussian distributions are being used
based on empirical evidence. In particular, q-Gaussian distributions are variance mixtures of
normals when 1 � q < 3 and not when q < 1. Explicit mixing distributions are provided,
which should extend further application of q-Gaussian distributions. An explanation for the
wide occurrence of these q-Gaussians is their role as attractors via central limit theorems for
exchangeable sequences and triangular arrays. A natural q-analog of the Brownian motion is
defined, the q-VM Brownian motion, which can be viewed as an alternative driving process to
the Borland (1998) process. The increments of the two processes have different characteristics
and thus model different phenomena. The paper also makes a connection with superstatistics
which are variance mixtures of normals after normalization. The Langevin equations that
yield superstatistics can be viewed as stochastic differential equations driven by exchangeable
processes.
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